
Safety through quality

Document ID: MC-WP-009 MTA for DO-178C v8 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

Multicore Timing Analysis for DO-178C

W H I T E  P A P E R





page i | Multicore Timing Analysis for DO-178C

Contents
1. The multicore revolution and DO-178C  1

2. Challenges of multicore timing analysis  3

 2.1 We need to consider resource contention and interference  4

 2.2 Multicore timing analysis can’t be entirely automated  5

 2.3 We have to test on the real hardware  5

 2.4 Assumptions need to be tested  6

3. The solution  7

 3.1 The process  7

	 				3.1.1	Requirements	definition	 	 8

     3.1.2 Understanding the multicore platform  9

     3.1.3 Test design  10

     3.1.4 Test implementation  12

     3.1.5 Evidence gathering  13

     3.1.6 Assessment  14

	 				3.1.7	Verification	results	 	 15

 3.2 Components of the solution  15

     3.2.1 Platform and Software Analysis and Characterization Services 16

     3.2.2 Documents and tests  16

	 				3.2.3	Rapita	Verification	Suite	 	 16

     3.2.5 RapiDaemons  16

               3.2.6 Integration                                                                                                         17

															3.2.7	Certification	support																																																																																								17

4. Want to learn more?  17



page 1 | Multicore Timing Analysis for DO-178C

Many OEMs are 

concerned about the 

long-term component 

availability of single 

core processors. This 

has led some to adopt 

multicore processors 

but disable all but 

one core, as they can’t 

economically verify 

the system when all 

cores are enabled. 

This isn’t a good 

long-term solution 

and doesn’t take 

advantage of the 

performance 

improvements 

offered	by	using	

multicore hardware 

to its full potential. 

The challenges of 

using multicore 

processors in the 

critical embedded 

domain should be 

tackled head on, and 

the potential of these 

processors embraced.

Since its inception in the 1980’s, the guidance offered by DO-178 and its successors 

has served the avionics industry well. DO-178B, published in 1992, and more 

recently DO-178C (2011), have kept pace with changes in avionics hardware by 

ensuring that their guidelines remain generic and relevant regardless of software 

architecture, programming language, etc.

Since DO-178 was first published, the embedded computing world has seen many 
significant changes, for example Moore’s Law having driven advances such that the 
computing power of modern cellphones now exceeds that of the Apollo 11 lunar 
lander many times over. One of the most significant changes is the innovation and use 
of multicore processors. With a higher density of silicon, these systems offer increased 
performance per unit area, which is critical to meet the needs of modern avionics 
systems. Their use comes at a price, as unlike single core systems, they offer neither a 
deterministic environment nor predictable software execution times. 

In response to the increased use of multicore processors, the Certification 
Authorities Software Team (CAST) published Position Paper CAST-32A named ‘Multi-
core Processors’ (often referred to as just ‘CAST-32A’). This Position Paper has since 
been superseded by official guidance – for DO-178C projects certified by the FAA in 
AC 20-193, and for ED-12C projects certified by EASA in AMC 20-193. AC 20-193, AMC 
20-193 and CAST-32A identify topics that could impact the safety, performance and 
integrity of airborne software systems executing on multicore processors and provide 
objectives intended to guide the production of safe multicore avionics systems. 

For example, and of particular relevance to this paper, objective MCP_Software_1 
in all three guidance documents requires that evidence is produced to demonstrate 
that all hosted software components function correctly and have sufficient time to 
complete their execution when operating in their multicore environment. This white 
paper outlines the challenges in demonstrating this, and presents a practical solution 
to do so that is compliant with DO-178C, AC 20-193, AMC 20-193 and CAST-32A.

1. The multicore revolution and 
DO-178C



page 2 | Multicore Timing Analysis for DO-178C

“The purpose of this 

CAST paper is to 

identify topics that 

could impact the 

safety, performance 

and integrity of a 

software airborne 

system executing on 

Multi-Core Processors 

(MCP).” - FAA

CAST-32A in DO178C 
certification

 

CAST-32A is a Position Paper published by the FAA.

2 key objectives of CAST-32A are relevant to timing analysis:

 6.3 Interference Channels and Resource Usage

“MCP_Resource_Usage_3: The applicant has identified the interference channels 
that could permit interference to affect the software applications hosted on the 
MCP cores, and has verified the applicant’s chosen means of mitigation of the 
interference.”

 6.4 Software Verification

“MCP_Resource_Usage_4: The applicant has identified the available resources of 
the MCP ... and has verified that the demands for the resources of the MCP and of 
the interconnect do not exceed the available resources when all the hosted software 
is executing on the target processor.

NOTE: The need to use Worst Case scenarios is implicit in this objective.”

AC 20-193 and  

AMC 20-193 are 

largely similar to 

CAST-32A.	The	official	

guidance documents 

include additional 

exemptions and 

clarifications	such	

as how the guidance 

can be applied for 

Integrated Modular 

Avionics (IMA) 

systems. 

 

You	can	find	out	more	

on our blog.

rapitasystems.com/

blog

AMC 20-193 vs.  
CAST-32A



page 3 | Multicore Timing Analysis for DO-178C

The Rapita Systems 

blog addresses topics 

related to on-target 

verification	including	

WCET analysis and 

optimization and 

structural coverage 

analysis. 

rapitasystems.com/

blog

Stay up to date Multicore systems are much more complex than their single core 
counterparts. To understand how to verify their timing behavior, 
we must first understand the unique challenges inherent in the 
analysis.

We’ve listed some of these below:

• We need to consider resource 
contention and interference: The 
execution time of a task in a multicore 
system is affected by contention for 
shared resources and the interference 
this causes. To investigate the timing 
behavior of a multicore system, we 
need to take this interference into 
account.

• Multicore timing analysis can’t be 
entirely automated: The complexity 
of multicore processors means that 
building a fully automated timing 
analysis solution is unrealistic. While 
tool support can automate most 
of the data gathering and analysis 
processes, engineering wisdom and 
expertise is needed to understand 
the system and direct tool usage to 
produce necessary evidence. 

• We have to test on the real 
hardware: Multicore CPUs are 
complex and often their internals 
are hidden, making purely 
analytical models of limited use in 
understanding their timing behavior. 
As such, the only way to determine 
exactly how the processor and its 
components behave is to measure 
timing behavior on the system itself.

• Assumptions need to be tested: 
To analyze the timing behavior of 
a multicore system, you will need 
to make some assumptions about 
things such as the interference 
channels in the system and their 
effects. After running tests based 
on these assumptions, you will likely 
need to reassess those assumptions 
and rerun tests. 

We’ll explore these challenges in detail in the next sections.

2. Challenges of multicore timing 
analysis

http://www.rapitasystems.com/blog 
http://www.rapitasystems.com/blog 


page 4 | Multicore Timing Analysis for DO-178C

2.1  We need to consider resource 
contention and interference

The timing behavior of a task in a multicore system is affected not only by the software 
running on it and its inputs, but also by contention over resources such as buses, 
caches and GPUs that are shared with tasks running on other cores. This contention 
causes interference to the timing behavior of the task.

To demonstrate this, we will use the YOLO1 real-time object detection software on an 
NVIDIA® Jetson® AGX board that has 8 NVIDIA Carmel cores. YOLO is an open source 
image recognition application that uses a neural network to identify and classify objects. 
The neural network calculations are performed on the GPU on the target board. To do 
this, the frame and neural network information are first loaded into memory and then 
pushed to the GPU for processing. 

We measured the reduction in YOLO’s frame rate when running YOLO on one of 
the cores while we applied sustained accesses on the L3 cache from tasks running 
on between 1 and 7 contending cores. The minimum frame rate from this series of 
experiments was almost a factor of 10 slower than when no contention was present, 
highlighting the importance of considering contention when analyzing the timing 
behavior of multicore systems.

1https://github.com/pjreddie/darknet

Figure 1 – Frame rate of YOLO with L3 cache contention



page 5 | Multicore Timing Analysis for DO-178C

2.2  Multicore timing analysis can’t beentirely 
automated

Timing analysis of single core systems can be entirely automated by using software 
tools such as RapiTime, which analyze the worst-case execution time (WCET) of tasks 
running on the system.

This isn’t the case for multicore systems, for which we must consider the effects 
of interference caused by resource contention on software execution times  
(see We need to consider resource contention and interference on page 4). Interference 
effects are complex, interlinked, and involve components specific to both the multicore 
architecture and the scheduling and resource allocation systems in the software.   

This means that, to properly perform the analysis, we need to apply the expertise of 
engineers who know the system in detail. While this expertise can be used to direct the 
use of software tools (for example specifying levels of contention to apply to specific 
resources), no automated timing analysis tool will be able to understand a multicore 
system in enough depth to perform the analysis alone.  

2.3  We have to test on the real hardware
A measurement-based approach is necessary to obtain execution time evidence for 
multicore software. Static execution time analysis approaches are not suitable as they 
require highly detailed models of the processor that are very difficult to obtain and 
their use would determine the pathological worst-case behavior of the code, which is 
extremely unlikely to occur.

A measurement-based analysis approach, however, does not rely on models, but 
instead exercises tests on the multicore hardware itself. Using such an approach, it is 
possible to collect timing data that reflects the behavior of the system and isn’t overly 
pessimistic.



page 6 | Multicore Timing Analysis for DO-178C

2.4  Assumptions need to be tested
When beginning to analyze the timing behavior of a multicore system, you’ll need to 
make assumptions about the system, such as interference channels present in it and 
how they affect each application. 

Throughout the analysis process, many of these assumptions may turn out to be 
invalid, and you’ll likely need to use knowledge gained from running tests to feed into 
a new testing cycle until you can verify that your assumptions are valid. 

This is best explained with a practical example. We studied the sensitivity of a memory-
intensive application running on a Xilinx®  Zynq®  Ultrascale+®  ZCU102 target board 
to different levels of interference. The Application Processing Unit on which the 
application was running has 4 cores. 

It would be a reasonable assumption that the L2 cache is a major interference channel 
for this application due to prior knowledge of the system. To validate this assumption, 
we design and run a test where the application is running while sustained accesses 
are made on the L2 cache from tasks running on between 0 and 3 contender cores. 

If the assumption is valid, then the number of both L2 cache misses and CPU cycles 
taken for the application to execute will increase with each additional contender core.

The figure above  shows that the assumption holds until we introduce a third contender 
core. This increases the number of CPU cycles but the number of L2 cache misses 
remains around the same as when only two contender cores are active. 

This highlights that the assumptions made about how the hardware behaves aren’t 
correct and the system will need to be investigated further to identify why the CPU 
cycles increase without the L2 cache misses increasing. This could be due to an 
interference channel that we didn’t account for in the analysis, such as a shared bus.

Figure 2 – CPU cycles and L2 cache misses for application on Xilinx Zynq 
Ultrascale+ ZCU102 board with contention on L2 cache



page 7 | Multicore Timing Analysis for DO-178C

Rapita Systems has developed a solution for multicore timing 
analysis that meets DO-178C, AC 20-193, AMC 20-193 and CAST-32A 
guidelines. The solution, MACH178 (Multicore Avionics Certification 
for High-integrity DO-178C projects) features a combination of 
engineering services and automated tool support to enable the 
investigation and quantification of interference effects in multicore 
systems. This allows specific questions about these systems to be 
answered, and DO-178C certification evidence to be produced. 

3.1  The process
MACH178 follows a V-model process to produce a clearly structured flow of verification 
artefacts that satisfy DO-178C traceability requirements and meet AC 20-193 and

3. The solution

Figure 3 – MACH178 process



page 8 | Multicore Timing Analysis for DO-178C

AMC 20-193 objectives, ensuring a cost-effective and methodical verification process.

While the stages initially follow a mostly linear progression, many stages may be 
returned to later in the verification process – for example to redefine assumptions 
made about the platform under analysis after testing identifies hidden interference 
channels.

The process is supported by Rapita Systems tooling and services, which are outlined in 
Components of the solution on page 15.

Within the next sections, you’ll learn about the process and be able to follow it in 
context through an example – testing the timing behavior of the Darknet YOLOv3 
object recognition application running on an NVIDIA AGX.

3.1.1 Requirements definition

In this stage, we identify high-level verification requirements for the multicore platform 
and project under analysis. 

Requirements depend on the scope and focus of verification activities and what the 
analysis is to be used for, potentially including: 

• Type and level of evidence on timing behavior and other aspects of the multicore 
system. 

• Certification requirements specified by the DO-178C Design Assurance Level 
(DAL), where appropriate. 

• Required verification artefacts depending on certification or other needs. 

• Any tool qualification requirements from the multicore analysis. 

We use items specified in both AC 20-193, AMC 20-193 and CAST-32A MCP planning 
phases (MCP_Planning_1 and MCP_Planning_2) to feed into the requirements 
elicitation process.

 

Example: Requirements

Our primary need is to analyze the sensitivity of Darknet YOLOv3’s frame rate 
to interference caused by contention on shared resources. We identify that the 
minimum frame rate for the application to operate successfully is 1.7 frames 
per second. From this, we elicit the following requirement: 

REQ-0001 – The frame rate of the Darknet YOLOv3 application shall be no less 
than 1.7 frames per second when the application must compete for resources.



page 9 | Multicore Timing Analysis for DO-178C

3.1.2 Understanding the multicore platform

In this stage, we analyze the platform to identify channels of interference that we 
need to investigate to meet our high-level requirements. We also expand high-level 
requirements into low-level requirements based on the interference channels we have 
identified. 

Our initial understanding of interference channels present in the system is likely to 
be incomplete. We use this as a blueprint for building tests in the next stages that 
reinforce our understanding of the platform under analysis, and may need to revisit 
this stage later. 

We use outputs from this stage to address the AC 20-193/AMC 20-193 MCP resource 
usage objectives. These objectives require the identification of MCP configuration 
settings, mitigation mechanisms and interference channels.

 

Example: Understand

We investigate the NVIDIA AGX hardware and Darknet YOLOv3 software to 
understand how the system behaves. For demonstration purposes, we provide 
the simplified analysis below:

• The Darknet YOLOv3 application is an object detection application, which 
uses a convolutional neural network to perform a significant amount of its 
calculations using GPU acceleration.

• Performing operations on the GPU typically requires building up a dataset, 
forwarding it to the GPU for processing and then receiving the results.

• There may be interference from sharing caches and buses.

• The application under analysis does not have to compete for GPU resources 
with other applications.

• The target board is the NVIDIA Jetson AGX.

• The NVIDIA Jetson AGX has a Xavier SoC.

• The Xavier SoC has 8 Carmel cores (ARMv8 architecture) and a GPU with 512 
Tensor cores.



page 10 | Multicore Timing Analysis for DO-178C

In subsequent stages of the example, we’ll focus on addressing REQ-0001-003, 
demonstrating how we investigate the impact of contention on the L3 cache on the 
execution of Darknet YOLOv3.

3.1.3 Test design

In subsequent stages of the example, we’ll focus on addressing REQ-0001-003, 
demonstrating how we investigate the impact of contention on the L3 cache on the 
execution of Darknet YOLOv3.

In this stage, we design the test cases needed to address the requirements elicited 
during the previous stage. 

We typically design test cases to do one or more of the following:

• Profile an application by executing it in isolation. This provides valuable information 
about the characteristics of the applications under test.

• Measure an application’s sensitivity to different types and levels of resource 
contention. We do this by executing the application while RapiDaemons (see 
RapiDaemons on page 16) contend for shared resources. This provides valuable 
information about how different interference channels affect each application.

• Measure the effectiveness of partitioning mechanisms by causing high loads using 
RapiDaemons.

• Measure the impact of resource contention on the system when all tasks are 
executing by adding additional load with RapiDaemons.

We apply an independent review process for all test cases to ensure that they meet the 
requirements they address, and use problem reporting and management processes 
to ensure issues are tracked and resolved.

 
From the information we gathered from our analysis, we expand REQ-0001 to 
elicit requirements including the following:

• REQ-0001-001: The frame rate of the Darknet YOLOv3 application shall be 
no less than 1.7 frames per second when the application must compete for 
access to the L1 cache. 

• REQ-0001-002: The frame rate of the Darknet YOLOv3 application shall be 
no less than 1.7 frames per second when the application must compete for 
access to the L2 cache.  

• REQ-0001-003: The frame rate of the Darknet YOLOv3 application shall be 
no less than 1.7 frames per second when the application must compete for 
access to the L3 cache.

• REQ-0001-004: The frame rate of the Darknet YOLOv3 application shall be 
no less than 1.7 frames per second when the application must compete for 
access to buses.

RapiDaemons are 

specialized programs 

designed to generate 

contention on 

specific	resources	

such as buses, 

caches and GPUs. 

Each RapiDaemon 

is designed to either 

maximize or match 

a desired level of 

contention for a 

specific	reource.	

RapiDaemons



page 11 | Multicore Timing Analysis for DO-178C

 

Example: Test design

In this stage, we write the following test case to address REQ-0001-003.

In the test case above, we have identified that there is a dependency for a L3 
cache contender. We’ll implement this contender in the next stage using a 
RapiDaemon.

Test Case ID TP-L3Cache-01

Requirements REQ-0001-003

Summary Identify the frame rate of Darknet YOLOv3 when 
subject to L3 cache contention

Dependencies L3 cache contender

Verification 
Strategy

To verify REQ-0001-003:

Measure the Darknet YOLOv3’s frame rate when 
run in isolation and when contention is applied on 
the L3 cache from tasks running on additional cores

Success criteria: The minimum frame rate observed 
is no less than 1.7 frames per second. 



page 12 | Multicore Timing Analysis for DO-178C

3.1.4 Test implementation

In this stage, we integrate software and hardware components needed to perform 
the analysis into the multicore environment (see Components of the solution on page 
15). This involves integrating RVS tools to enable the automated collection of metrics 
including execution time metrics and performance counters such as cache misses, 
and RapiDaemons needed to apply contention on shared hardware resources.

Then, we implement test cases as automated test procedures and execute them. 
Each test procedure specifies the aspect of the system that we need to measure (e.g. 
function, task), the set of metrics needed to verify the requirement under test and the 
specification of when RapiDaemons are to be run, as needed.

We formally test all RapiDaemons on-target to ensure that they are functioning as 
intended.

 

Example: Test implementation

We integrate RVS with the NVIDIA AGX hardware and Darknet YOLOv3 
software and configure a RapiDaemon to apply contention on the L3 cache in 
this environment. Our integration includes implementing a method to capture 
other measurements from the system including L3 cache access counters.

We then write test procedures based on our test case, which will collect 
execution time and L3 cache access information while running the application 
with contention applied from between 0 and 7 other cores on the NVIDIA 
Jetson AGX by the use of RapiDaemons.

Test under 
analysis

RapiDaemons

Test sequence

Figure 4 – Test case that collects executing time and L3 cache access information



page 13 | Multicore Timing Analysis for DO-178C

3.1.5 Evidence gathering

In this stage, we run test procedures on-target and collect results. We inspect results 
to ensure that they are complete and as expected, and reiterate test design where 
appropriate.

 

Example: Evidence gathering

We use RapiTest to automatically convert our test procedures into test 
harnesses that we can run to execute the application under analysis while 
resource contention is applied, and then run the object files on the NVIDIA 
AGX. 

While RapiTest runs our tests, RapiTime automatically collects an 
execution trace and processes this to produce an RVS report that includes 
execution time metrics and performance counters that capture additional 
measurements, including L3 cache access counters. 



page 14 | Multicore Timing Analysis for DO-178C

3.1.6 Assessment

In this stage, we assess whether the results provide conclusive evidence towards 
verification of relevant low-level timing requirements. 

If we encounter any deviations from expected results, we investigate them, revising our 
understanding of the platform and reformulating our assumptions (see Understanding 
the multicore platform on page 9). For example, assessment of results can identify 
hidden interference channels in the system, which we will investigate, leading us to 
design and implement more tests where necessary until we have conclusive evidence 
that our assumptions about the system are valid. 

The outputs from this stage support the AC 20-193/AMC 20-193 MCP_Software_1 
objective, which requires that we verify the correct behavior of the hosted software 
within the allowed time frames.

 

Example: Assessment

We assess our test results in the context of Requirement REQ-0001-003, 
which is being addressed by our test case. The plot below summarizes the 
results from executing the task under analysis when contention is applied on 
the L3 cache from tasks running on between 1 and 7 other cores.

From our results, we conclude that the Darknet YOLOv3 application is resilient 
to contention on the L3 cache when tasks running on up to 3 other cores 
perform sustained accesses to it. Increasing the number of contenders to 4, 
however, causes the frame to go below the threshold of 1.7 frames per second 
specified in REQ-0001-003. We have also identified that the minimum frame 
rate from L3 contention with this setup, 0.9 frames per second. 



page 15 | Multicore Timing Analysis for DO-178C

3.1.7 Verification results

In this stage, we produce a report that summarizes verification results collected during 
the previous stages. We also include any deviations from the process and highlight 
significant findings from the analysis in this report. 

The results in this report let us demonstrate how we met the high-level objectives 
identified during the first stage (see Requirements definition on page 8), while including 
full traceability per DO-178C and AC 20-193/AMC 20-193. 

If the process is being used in a DO-178C certification context, the outcome of this 
stage is used to supplement the Software Accomplishment Summary referenced in  
the AC 20-193/AMC 20-193 MCP_Accomplishment_Summary_1 objective.

3.2  Components of the solution
MACH178 includes the following components: 

• Platform and Software Analysis and Characterization Services, which rely 
on the expertise of our specialist multicore engineers to understand and analyze 
multicore platforms and test multicore timing behavior against requirements.

• Documents and tests, template DO-178C planning documents for AC 20-193/
AMC 20-193 compliance, process documents and tests to support the solution.

• Rapita Verification Suite (RVS), a collection of embedded software verification 
tools that is widely used in the critical aerospace industry. 

• RapiDaemons, a collection of specialized programs to generate contention on 
shared hardware resources.

• Integration of RVS and RapiDaemons with the multicore platform under analysis.

• Certification support, qualification kits and services to support DO-330 tool 
qualification of RVS and RapiDaemons

 

Example: Verification results

From our analysis, we have obtained enough information to elicit the worst-
possible slowdown that the Darknet YOLOv3 application may experience due 
to contention on the L3 cache and address requirement REQ-0001-003. 

To document our findings, we produce a Software Accomplishment Summary 
report, which is required by AMC 20-193 and CAST-32A. This report 
summarizes the activities we performed, focusing on how our verification 
activities addressed relevant AMC 20-193 and CAST-32A objectives. We also 
provide input to the DO-178C mandated deliverables, SAS and HAS.



page 16 | Multicore Timing Analysis for DO-178C

3.2.1 Platform and Software Analysis and Characterization 
Services

To investigate the timing behavior of multicore software, our expert engineers study 
the multicore platform under analysis, elicit requirements, and use automated RVS 
tool support to run multicore timing tests to evaluate multicore hardware and produce 
timing evidence needed to meet DO-178C and AC 20-193/AMC 20-193 objectives.

3.2.2 Documents and tests

We provide template compliance documents for DO-178C certification in line with AC 
20-193 and AMC 20-193 objectives, including a template Plan for Multicore Aspects of 
Certification which can be linked from the Plan for Software Aspects of Certification. 
We also provide process documents to support DO-178C compliance, and tests that 
support the analysis of multicore timing behavior.   

3.2.3 Rapita Verification Suite

The following Rapita Verification Suite (RVS) plugins support MACH178:

• RapiTest automatically measures and reports execution time metrics from the 
task under analysis. 

• RapiTime lets engineers write multicore tests easily and automatically converts 
these into a test harness that checks software behavior. 

• RapiTask automatically measures and reports scheduling metrics for each task 
under analysis. 

3.2.4 RapiDaemons

RapiDaemons are specialized programs designed to generate contention on specific 
resources such as buses, caches and GPUs. Each RapiDaemon is designed to either 
maximize or match a desired level of contention for a specific resource. As such, 
RapiDaemons can be used to characterize hardware by investigating how different 
functions are affected by different types and levels of contention and quantify the 
impact of this contention (known as interference channels in AC 20-193/AMC 20-193). 

After writing multicore timing tests with RapiTest, RapiDaemons are automatically 
applied to configure the desired level of resource contention in each test. 

We verify the behavior of RapiDaemons via requirements-based testing, ensuring that 
they execute as intended and stress the desired resources at the desired level. To 
verify them, we use independent metrics such as those provided by the Performance 
Monitoring Unit (PMU) on ARM-based chips.



page 17 | Multicore Timing Analysis for DO-178C

3.2.5 Integration

To support timing analysis on a multicore system, hardware and software components 
needed for the verification process must be integrated with the multicore platform 
under analysis. 

This is achieved through an engineering service to integrate RVS plugins into the 
toolchain, put in place a suitable data collection mechanism, and port and configure 
any RapiDaemons needed for the analysis.

3.2.6 Certification support

We provide qualification kits and services to support DO-330 tool qualification for RVS 
and RapiDaemons, which are classed as Tool Qualification Level 5 tools.  

4. Want to learn more?
If you want to learn more about multicore timing analysis, visit the Rapita Systems 
multicore timing discovery page at rapitasystems.com/multicore-timing. This 
includes videos, pre-recorded webinars and more informational resources on 
multicore timing analysis. 

If you have a multicore system you need to verify timing behavior for, we’d 
love to hear about your project and see what we can do to help.

info@rapitasystems.com  

We regularly release new material and run training courses on multicore timing analysis 
worldwide. To make sure you’re notified, sign up to our mailing list. 

rapitasystems.com/newsletter

http://www.rapitasystems.com/multicore-timing
mailto:info%40rapitasystems.com?subject=
http://www.rapitasystems.com/newsletter


About Rapita
Rapita Systems provides on-target software verification tools and services globally 
to the embedded aerospace and automotive electronics industries.

Our solutions help to increase software quality, deliver evidence to meet safety 
and certification objectives and reduce costs.

Find out more
A range of free high-quality materials are available at: 
rapitasystems.com/downloads

Contact
Rapita Systems Ltd. 
Atlas House 
York, YO10 3JB 
UK 

+44 (0)1904  413945

Rapita Systems, Inc. 
41131 Vincenti Ct. 
Novi, Mi, 48375 
USA

+1 248-957-9801

Rapita Systems S.L. 
Parc UPC, Edificio K2M 
c/ Jordi Girona, 1-3 
Barcelona 08034 
Spain

+34 93 351 02 05

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

S U P P O R T I N G  C U S T O M E R S  W I T H :

Rapita Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

Engineering Services

V&V Services

Integration Services

Qualification

SW/HW Engineering

Compiler	Verification

Multicore verification

MACH178

Multicore Timing Solution

Tools

https://www.rapitasystems.com/downloads
http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems
mailto:info%40rapitasystems.com?subject=

